New Versions of Midpoint Inequalities Based on Extended Riemann–Liouville Fractional Integrals

نویسندگان

چکیده

This study aims to prove some midpoint-type inequalities for fractional extended Riemann–Liouville integrals. Crucial equality is proven build new results. Using this equality, several are established via differentiable convex functions and the proposed operators. To be more specific, well-known Hölder, Jensen, power mean integral employed in demonstrated inequalities. Additionally, many remarks based on specific selections of main results presented. Moreover, illustrate key conclusions, a few instances provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalizations of Hadamard Inequalities for Fractional Integrals

Fej'{e}r  Hadamard  inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r  Hadamard  inequalities for $k$-fractional integrals. We deduce Fej'{e}r  Hadamard-type  inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.

متن کامل

New Inequalities Using Fractional Q-integrals Theory

The aim of the present paper is to establish some new fractional q-integral inequalities on the specific time scale: Tt0 = {t : t = t0q, n ∈ N} ∪ {0}, where t0 ∈ R, and 0 < q < 1.

متن کامل

Integral Inequalities for h(x)-Riemann-Liouville Fractional Integrals

In this article, we obtain generalizations for Gr&uuml;ss type integral inequality by using h(x)-Riemann-Liouville fractional integral.

متن کامل

Discussion of some inequalities via fractional integrals

Recently, many generalizations and extensions of well-known inequalities were obtained via different kinds of fractional integrals. In this paper, we show that most of those results are particular cases of (or equivalent to) existing inequalities from the literature. As consequence, such results are not real generalizations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and fractional

سال: 2023

ISSN: ['2504-3110']

DOI: https://doi.org/10.3390/fractalfract7060442